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Comparison of the Linear
Finite Element Prediction
of Deformation and Strain
of Human Cancellous Bone
to 3D Digital Volume
Correlation Measurements
The mechanical properties of cancellous bone and the biological response of the tissue to
mechanical loading are related to deformation and strain in the trabeculae during func-
tion. Due to the small size of trabeculae, their motion is difficult to measure. To avoid the
need to measure trabecular motions during loading the finite element method has been
used to estimate trabecular level mechanical deformation. This analytical approach has
been empirically successful in that the analytical models are solvable and their results
correlate with the macroscopically measured stiffness and strength of bones. The present
work is a direct comparison of finite element predictions to measurements of the defor-
mation and strain at near trabecular level. Using the method of digital volume correla-
tion, we measured the deformation and calculated the strain at a resolution approaching
the trabecular level for cancellous bone specimens loaded in uniaxial compression.
Smoothed results from linearly elastic finite element models of the same mechanical tests
were correlated to the empirical three-dimensional (3D) deformation in the direction of
loading with a coefficient of determination as high as 97% and a slope of the prediction
near one. However, real deformations in the directions perpendicular to the loading
direction were not as well predicted by the analytical models. Our results show, that the
finite element modeling of the internal deformation and strain in cancellous bone can be
accurate in one direction but that this does not ensure accuracy for all deformations and
strains. �DOI: 10.1115/1.2146001�
ntroduction
It has become common to study the mechanical properties of

hole bones using finite element models �FEM� created from high
esolution computed tomography and magnetic resonance images
aken at a resolution compatible with in vivo scanning �1–10�. For
igher resolution modeling of mechanical behavior, images are
btained that resolve the individual trabeculae of cancellous bone
issue and from these images finite element models are made and
olved to estimate the strain, stress, and deformation fields of the
ndividual trabeculae �4,11–19�. At all levels of resolution, the
nite element method has proven itself to be a very useful tool to
nderstand and predict the mechanical properties of both whole
ones and bone tissue. As examples, linear FEM estimation of
one modulus predicts more than 80% of the variance in experi-
ental modulus and strength of cancellous bone specimens

12,17� and is applicable to tracking changes in bone mechanical
roperties in vivo �5,16�. Developing an empirical approach to
esting the predictions of the finite element method could result in
ven better predictions than are already available.

To test the strain predictions of FEM experimentally, it has
raditionally been necessary to mechanically test bones in vitro
nd compare measured strains �20–22� to a finite element simula-
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tion of the experiment. However, strain gages and markers only
measure surface strain, which leaves FEM predicted internal de-
formations of bone untested. As a consequence of the limitation of
strain gages bonded to the surface of bone, the finite element
predictions of deformation and strain in bone have never been
directly compared to a full field of 3D measurements. We have
developed an experimental method that can measure the 3D inter-
nal deformation of cancellous bone and estimate the 3D strain
distribution �23–25�. The main goal of our current research was to
compare linear FEM predictions against 3D experimental defor-
mation and strain data for cancellous bone. Note that the inho-
mogenous 2D surface displacements of cancellous bone speci-
mens have been measured �26� but that FEM predictions of
cancellous bone deformation have never been directly compared
to deformation data.

The digital volume correlation method �DVC� was devised to
measure the 3D internal deformations of structures by comparing
mechanically deformed and undeformed computed tomography
images �24,25�. The DVC method is, essentially, a 3D version of
the 2D methods of texture correlation �23� or photogrammetry
�27� where the deformation of a surface is determined by corre-
lating the texture of the deformed image to that of an undeformed
image. In the DVC method a similar approach is applied to com-
puted tomography scans where portions of the image are tracked
between the deformed and undeformed scans to determine the
vector field of deformations caused by a mechanical load. After
the deformation field is measured, the strain field �based on de-
rivatives of the deformation� can easily be computed.
In initial reports, DVC was used to measure the strain in cylin-
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ers of cancellous bone deformed by a radiolucent mechanical
oading system mounted in a microcomputed tomography system
24�. The precision of DVC for measuring the strain of cancellous
one specimens was, on average, better than 302 microstrain �24�.
his reported precision would be sufficient to test FEM predic-

ions to some degree; however, an improved strain precision
ould be preferable. As a secondary goal of the current project,
odifications to the DVC technology were made to improve its
easurement precision.

ethods

Overview. The predictions of the internal strain and deforma-
ion from linear FEM models of cancellous bone were compared
o deformation and strain data measured from the same specimens
sing the method of digital volume correlation �DVC�. An overall
utline of the steps of the comparison is presented in Fig. 1, with

Fig. 1 Flowchart for the project
etailed explanations of the methods for each step outlined below.

/ Vol. 128, FEBRUARY 2006
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Digital Volume Correlation. The methods used in the current
study are similar to those described in our initial presentation of
the DVC method without rotational degrees of freedom �24�. In
detail, however, there are changes in the algorithms used to solve
the problems. These changes resulted in a significant improvement
in the method’s precision and accuracy and are included in the
following discussion. The following presentation of methods is
complete, but a fuller understanding can be obtained by examin-
ing both the current and previous work. As a general overview, the
DVC method uses three-dimensional image processing methods
to measure the change in position of the internal features of an
object by comparing images of the undeformed and deformed
object. The collection of changes in position �the displacement
field� is then used to calculate a strain field for the object.

Image volumes were obtained from two 15 mm in diameter and
18 mm high cylindrical bone specimens �one each from a human
distal femur and vertebral body� using a micro CT system �28�
and a radiolucent mechanical loading system �24�. The CT scans
were reconstructed into volumetric models 520�520�580 in
size. Each image voxel was encoded as a gray-scale, 16-bit integer
representing a 35 �m cube. The cancellous bone specimens were
glued to the compression platens and axially compressed using
our specially built radiolucent loading system. �The compression
direction for the experiment was the “z” or axial direction of the
cylinder. A more complete discussion of sample handling and
loading has been reported previously �24�.� Pairs of image vol-
umes were taken of each specimen, one in the unloaded and an-
other in the loaded state. For testing of precision, two sequential
images of a vertebral cancellous bone specimen were taken with-
out loading. This pair of images was used to measure the inherent
noise in the imaging and tracking system �24�.

The images were filtered by subtracting a value equal to the
mode of the frequency distribution of the density and setting any
resulting negative values to zero. This eliminated much of the
inherent �stochastic� noise in the CT of the marrow regions. The
resulting voxel values were linearly transformed so that the final
density histograms of both images had a mean density of 1000.
This postprocessing of the images greatly reduced the effects of
drift in the x-ray source intensity between imaging times, resulting
in improved displacement and strain precision.

Displacement of the specimen under loading was measured at a
grid of reference points in the unloaded volume by matching a
spherical subvolume �a 30-voxel radius was used in the current
study� surrounding each reference point to the loaded volume so
as to minimize the sum of squared differences in density between
corresponding voxels. The initial guess for the deformed position
of the subvolume was determined using an exhaustive digital
search. In this process, the subvolume was matched against all
possible whole voxel deformations that the tissue might have un-
dergone. Using a systematic method greatly reduces the complex-
ity of the search algorithm compared to a gradient approach and is
quite rapid on modern computing equipment. Successful search
results were used to predict the deformations of neighboring sites
to improve the search speed.

Resolving the deformations at the subvoxel level was facilitated
by using tricubic interpolations of the density values. Density was
interpolated as:

d�x,y,z� = �
i=0

3

�
j=0

3

�
k=0

3

Cijkx
iyjzk, �1�

where x , y, and z are the coordinates within the unit cube. The 64
coefficients of Eq. �1� can be obtained by multiplying a 64-tuple
of all voxels within one voxel space of the cube by a constant
64�64 transformation matrix �Appendix A�. Matrix operations
perform well in the four-way SIMD �single instruction multiple
data� unit of a Pentium 4 PC and the coefficients were cached
during the search process. The vector of 64 xiyjzk terms was pre-

computed for each search, and then multiplied in turn by the
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ached coefficient vectors of each voxel position using SIMD
rithmetic. This approach permitted rapid evaluation of candidate
earch locations. An empirically chosen limit on maximum dis-
ance traveled was used for each coordinate of displacement so as
o reject reference points that failed to converge.

Subvoxel search was performed using a steepest descent algo-
ithm �29� with a quadratic prediction heuristic. Using the results
f the systematic search as an initial guess, the sum-of-squares fit
unction and its three partial derivatives were computed simulta-
eously with four-way SIMD. Four new guesses were chosen
long the negative gradient line �0.5 voxel spaces, 0.01 voxel
paces, and two distances logarithmically spaced between them�
nd evaluated simultaneously with four-way SIMD. The three best
ts were chosen among the original and four new guesses, and a
arabola was used to predict the minimum fit position on the
radient line. This became the guess for the next iteration. The
earch ended when the distance moved was less than 0.01 voxel
paces. Searches typically converged in an average of 3.2
terations.

To smooth the displacement data and to calculate the strain, a
riquadratic function was fit to each displacement coordinate of
ach base reference point and its 60 closest neighbors ��24�, Ap-
endix B�. If the displacement data were to be smoothed, the
onstant term of the function was used as the smoothed displace-
ent of the base point. To determine the strain, the displacement

ata �either smoothed or unsmoothed� were fit by the triquadratic
unction and the coefficients of the linear terms were used to
alculate the strain tensor. The matrix of coefficients for the qua-
ratic terms is an estimate of the Jacobian matrix of the displace-
ent field �30�. The linear strain tensor was calculated as the

ymmetric part of the Jacobian matrix.

Finite Element Modeling. Using our previously published
ethods, FEM was used to analyze the displacement and strain

istribution in a voxel based model of the specimen with uniform
ard tissue modulus and Poisson’s ratio set to �=0.3 �12�. �Note
hat the effect of Poisson’s ratio was tested by running a case with
=0.45. This large change in Poisson’s ratio did not affect any
onclusions made based on the data from the simulations.� To
imulate the glued condition of the experimental specimens, the
oundary displacements for the models were matched to the DVC
easured displacements at the top and bottom of the specimen.
his accounted for rotation and translation of the glued ends of

he specimens—our prototype mechanical loading system was too
exible and the endplanes of the specimens did not move with a
erfectly plane translation during loading. The FEM model had a
esolution of 43.75 micrometers. For comparison purposes, the
etailed FEM displacements were averaged over the hard tissue
ithin a radius of 1.05 mm �this eliminates averaging the un-
nown displacements of the marrow� to reduce their resolution to
e comparable to the displacement measurements of the DVC
ethod. The strain field associated with the smoothed FEM dis-

lacement field was calculated using the same methods as those to
alculate the strain for the experimental DVC displacement field.

Comparison of Results. The displacement and strain fields for
oth the DVC and the FEM estimates were analyzed using linear
egression analysis. The expected outcome �for a perfect predic-
ion � is a coefficient of determination of one, a slope of one and
zero intercept for each component. Visualizations of the various
arameters were also used to obtain better understanding the re-
ression results.

esults
The error of the improved DVC process was evaluated by mea-

uring the displacement and strain between two CT scans of the
ame vertebral cancellous bone specimen �Table 1�. The standard
eviation of the displacement was 0.008 voxel spaces and the
train was 168 �-strain units. Smoothing the displacements im-

roved these figures to 0.005 voxel spaces and 69 �-strain units.
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Both values compare well to data reported in an earlier study �24�.
In the remainder of this study, the smoothed displacement method
�strain precision of 69 �-strain� was used. The DVC program ran
for 470 milliseconds per reference point on a 1.8 GHz PC, a
fourteen-fold improvement from the previous method. The perfor-
mance improvement resulted from newer hardware, the use of
SIMD programming for the calculations and a technique for
guessing the initial inter-voxel displacement by fitting a parabola
to the adjacent integer locations

The FEM and DVC displacement and strain results were gen-
erally highly related �Table 2� with better coefficients of determi-
nation 1� between the displacements than for strains and 2� for the
femoral �high density� than for the vertebral �low density� speci-
men. The value of Poisson’s ratio was unimportant to the accuracy
of the predictions �data not shown�. The best coefficient of deter-
mination between experimental and computer prediction of the
displacement �Table 2; Fig. 2� was for the direction of loading �uz�
for both specimens. There was a similar finding for the strain in
the loading direction ��zz; Table 1; Fig. 3�, however, the xz shear
strain in the vertebral specimen was slightly better predicted by
the experimental values than was the zz normal strain. For the
parameters with the better coefficient of determination �r2; Table
2�, the regression slopes were close to one as would be expected if
FEM is an accurate method for prediction of 3D deformation and
strain in cancellous tissue. However, the slopes of the regressions
for the transverse deformations were less than one as were the
majority of the slopes for strains other than the normal strain in
the loaded direction. Visualization of the displacements and
strains �e.g., Figs. 4–6� were informative as to the apparent simi-
larities of the different methods of estimating parameters of inter-
est.

Discussion and Conclusion
The FEM method predicted displacements in the loading direc-

tion that were very similar to those measured using the DVC
method for the higher density femoral bone specimen. In the
transverse directions, less accuracy was achieved. Results for the
vertebral specimen the pattern were similar, but the predictions
generally had poorer coefficients of determination than for the
femoral case. This difference might be attributed to poorer accu-

Table 1 Standard deviation of DVC measurement of displace-
ment „d; in voxel units… and strain „�; microstrain… for each of
the natural axes taken from repeat scans. The columns are cal-
culations from: Unsmoothed „raw… DVC displacement data,
from DVC data smoothed as described in the text and from the
original report of the DVC method for these same image data
†23‡.

Standard
Deviation of
Displacement

�voxels� Raw Smooth
Bay et al.

�23�

dx 0.009 0.006 0.031
dy 0.009 0.006 0.044
dz 0.007 0.004 0.030

d �average� 0.008 0.005 0.035
Standard

Deviation of
Strain

�microstrain�
�xx

279 100 457
�yy

224 87 323
�zz

131 66 280
�xy

155 73 211
�xz

116 49 239
�yz

100 39 224
� �average� 168 69 289
racy of FEM for lower density tissue �larger voxels compared to
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rabecular thickness �31–33��, the presence of modulus inhomoge-
eity in the specimens �13� and possible difficulty with resolving
mall trabecular elements using 35 micrometer voxels.

The presence of modulus inhomogeneity may affect deforma-
ions perpendicular to the loading direction �ux,uy�. The specimens
ere loaded in the expected habitual functional load direction for

he tissue specimens. Transverse trabeculae may have a lower
odulus than trabeculae oriented in the habitual load direction

34,35�, and would be expected to deform differently from the
EM prediction that used an assumption of uniform material
roperties. This could result in the models having a systematic
rror in prediction of the lateral expansion of the specimens rela-
ive to the experimental data. In the current case, the FEM models
redicted smaller lateral deformation than measured using DVC
the slopes for the lateral deformation are smaller than one in
able 2 indicating that FEM predictions were smaller than DVC
easurements�. These results are consistent with the theoretical

rediction that nonuniform material properties will have a signifi-
ant effect upon the accuracy of FEM for cancellous bone �13�.

Visualization of the vertical displacement �uz� from the DVC,
veraged FEM and direct FEM method �Fig. 4� for the best femo-
al displacement case �Table 2� provided some confidence that the
ethods can result in usefully comparable results. Visualization

Table 2 Prediction of FEM results from DVC r
are displacements and “�” values are strains.
with an intercept of zero.

Femoral sample

R∧2 Intercept Slo

ux
0.601 0.208 0.8

uy
0.293 −0.954 0.5

uz
0.970 0.145 0.9

�xx
0.094 0.001 0.4

�yy
0.376 −0.001 1.1

�zz
0.768 0.000 0.8

�xy
0.071 −0.001 0.4

�yz
0.000 NS N

�xz
0.085 0.000 0.4

ig. 2 Prediction of FEM vertical deformation by DVC for
emoral sample

ig. 3 Prediction of FEM vertical strain by DVC for femoral

ample

/ Vol. 128, FEBRUARY 2006
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�Fig. 5� of the vertical normal strain ��ZZ� for the best femoral
strain case �Table 2� demonstrates a limit of the DVC method in
validating the predictions of FEM. The strain calculated from the
DVC strain �Fig. 5, left panel� is similar to the strain calculated
from average FEM displacement �Fig. 5, central panel� but both
differ greatly from �ZZ calculated using unaveraged FEM dis-
placement results �Fig. 5, right panel�. Averaging the directly cal-
culated FEM �ZZ using the same method as used to average the
FEM displacements does not make the directly calculated FEM
strains similar to the other strain measures �compare Fig. 6 with
the left two panels of Fig. 5�. These visualizations support the
conclusion that the results of the DVC and FEM methods are
similar at the level of the average displacements, but that the DVC
method as used here is not able to test the predictions of trabecular

lts „NS=not significant at p<0.05…. “u” values
te that the ideal relationship is a slope of one

Vertebral sample

R∧2 Intercept Slope

0.374 0.049 0.519
0.337 0.040 0.332
0.905 0.079 0.934
0.006 0.000 0.104
0.126 0.000 0.407
0.327 0.000 0.905
0.063 0.000 0.320
0.099 0.000 0.604
0.339 0.000 1.313

Fig. 4 Comparison of vertical displacement magnitude from
DVC „left…, averaged FEM „center…, and actual FEM „right… for a
coronal section through the femoral specimen. Colors repre-
sent displacement magnitude as presented in the key. The dis-
placements are clearly similar and the averaged FEM displace-
ments are comparable to those of the original FEM prediction.
This shows both how the DVC and averaged FEM measures are
similar and also that the averaging of the FEM was not so ag-
gressive as to destroy its original character.

Fig. 5 Comparison of vertical strain „�zz… from DVC „left…,
strain calculatded from averaged FEM displacement „center…,
and actual FEM „right… for a coronal section through the femo-
ral specimen. Colors represent strain presented in the key. The
similarities between these strain panels are less than those for
esu
No

pe

82
80
81
13
71
98
65
S
71
the displacement „Fig. 4….
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evel strain. This limitation arises from the use of DVC to track
rabecular sized features of the deformed images. As a result, sub-
rabecular level predictions of FEM cannot be tested. This limita-
ion is not in the DVC software, however, but rather is inherent to
he scanner used in the current study. It is possible that improve-

ents in scanner technology will eventually overcome this limi-
ation.

This is the first report comparing the finite element estimated
eformation and strain in cancellous bone to directly measured
alues of internal deformation and strain in three dimensions.
onsidering the current limitations of each technology, the good

esults for the main loading direction suggest that the DVC
ethod could be used as a means to collect data to test the defor-
ation estimates of the FEM method for cancellous bone.
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ppendix A: Calculation of Values and Derivatives of
ricubic Interpolated Data
This appendix outlines steps used to efficiently code the deriva-

ives of tricubic interpolated data used for the subvoxel resolution
f displacement. The basic theory is discussed in �24�, but our
resent implementation is different.

First, a matrix of the coefficients of the partial derivatives of the
ricubic polynomial, evaluated at the eight locations �x ,y ,z�
�0,0 ,0�, �0,0,1�, … �1,1,1�, was built. This matrix contains only

he coefficients generated by differentiation, not the polynomial
tting coefficients. Let us call this matrix M1. Next, invert M1 to
efine matrix M2= �M1�−1 using the Gauss-Jordan elimination
ethod. This matrix does not vary with respect to the data being

nterpolated, since it was generated from only the pure polynomial
ifferentiation process.

Now we are faced with the problem of calculating the finite-
ifference derivatives. If we consider each of the eight vertices of

ig. 6 Average of the vertical strain „�zz… from the right panel
f Fig. 5. These results, directly averaged from the FEM calcu-

ation of strain, are distinct from strain calculated from aver-
ged FEM or from DVC measured displacements. Causes of the
ifferences are discussed in the body of the text.
he voxel space, we see that the 64 finite-difference derivatives are

ournal of Biomechanical Engineering

nloaded 27 Aug 2012 to 141.217.20.120. Redistribution subject to ASM
all linear functions of the 64 voxel values in the 4�4�4 cube
surrounding the voxel space and can be expressed as a matrix M3
multiplying the vector composed of the 64 voxel values.

Given the matrices, M2 and M3, the interpolation process
works as follows:

�1� Arrange the voxel values at the 64 adjacent locations into a
vector;

�2� multiply this vector by M3 to get a vector of the finite-
difference derivatives of the eight vertices;

�3� multiply the finite-difference vector by M2 to get the 64
polynomial fitting coefficients;

�4� evaluate the 64 polynomial terms at the inter-voxel point of
interest.

�Note: In the actual coding of the algorithm, the constant matrix
�M2��M3� was precalculated and coded directly into the program
as a fixed matrix.�

Appendix B: Strain Estimation
The result of the DVC process is a discrete displacement-vector

field d�p�, defined for successfully calculated reference points p
in the specified grid. Following the method given in Bay et al.
�24�, a triquadratic interpolation of the discrete displacements is
used first to smooth these displacements, then to estimate the
strain tensor field from the smoothed displacement.

A Maclaurin series is fitted to neighboring reference points
�typically 60� around each p. For each reference point pi neigh-
boring p0, one can calculate the change in displacement ��d� as a
function of change in position ��p� as:

�d��pi� = d�pi� − d�p0� . �B1�

Let ��i ,�i ,�i� represent the three components of �pi �distance
from p0 to pi�. The x-component of �d��pi� can be estimated by
the first ten terms of the three-dimensional Maclaurin series:

u��,�,�� = U0 + �
�u

��
+ �

�u

��
+ �

�u

��
+

�2

2

�2u

��2 +
�2

2

�2u

��2 +
�2

2

�2u

��2

+ ��
�2u

�� � �
+ ��

�2u

�� � �
+ ��

�2u

�� � �
+ ¯ �B2�

These ten terms are fitted to the x-coordinate of �d��pi� for the pi

neighboring p0, minimizing the least-squares error with steepest-
decline search. The remaining terms of the series are ignored.
Similarly, a ten term function ��� ,� ,�� is fitted to the
y-coordinate of �d��pi� and, also, w�� ,� ,�� is fitted to the
z-coordinate of �d��pi�. In the first pass, the resulting constant
terms �U0 ,V0 ,W0� become the smoothed estimate of d�p0�. In the
second pass of the derivative process, the values of the three first-
order terms

�S�p0�� = �
�u

��

�u

��

�u

��

��

��

��

��

��

��

�w

��

�w

��

�w

��

� �B3�

are used to estimate the linear �Cauchy� strain tensor at p0 as,
��p0�= � 1

2
��S�p0�+ST�p0��.
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